

Safety valves for pressure relief in accordance to PED, DIN/EN and ASME

Features

The regular safety valve for low pressures:

- Cost-effective body design with seat bushing
- > Smooth and stable behaviour thanks to comparatively low lift
- > Cast iron body with inner parts mainly out of stainless steel

Inlet sizes

DN 20 to DN 150

Pressure rating PN 10 to PN 16

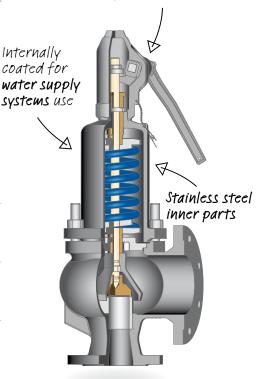
Set pressures 0.45 bar g to 16 bar g

Temperature range

-10 °C to +300 °C

Overpressure

Vapours/gases 10% Liquids 10%


Blowdown

Vapours/gases 10% Liquids 20%

Allowable built-up back pressure

15% of set pressure

Stable opening response with very low lift

Applications

- > For vapours, gases and liquids
- > Protecting the systems downstream of control valves
- > Water supply up to PN 16
- > Approved for drinking water

Approvals and standards

EC type examination

- Pressure Equipment Directive 97/23/EC
- DIN EN ISO 4126-1
- AD2000-Merkblatt A2
- VdTÜV Merkblatt "Sicherheitsventil 100"

VdTÜV type approval acc. to

 $\label{eq:control_control_control} \text{T\"{U}V.SV.} 12\text{-}209.\text{d}_{0}.\text{D}/\text{G}/\text{F.}\alpha_{\text{w}}.\text{p}$

IMI Bopp & Reuther will not renew the existing VdTÜV type approvals. The requirements by VdTÜV and applicable standards are completely considered by the EC type examination.

The design, manufacture, testing and labelling meet the requirements of DIN EN ISO 4126-1, DIN EN 12266-1/-2 (insofar as applicable for safety valves), EN 1092-1, EN 1759-1, AD 2000-Merkblätter A2 and HP0, ASME B16.5, ASME VIII

Type code

Туре	code			Ordering example		
1	Series	Si 2	DIN/EN regular safety valve		Si 2	
2	Design	3	Conventional, closed bonnet		3	
3	Characteristic	2	Regular Flow		2	
4	Pressure class	1	Up to PN 16		1	
5	Сар	А	Packed lifting lever		A	
		AB	Packed lifting lever with test gag			
6	Material code	DE 05 EN-GJL-250/5.1301 GG25/0.6025/EN-JL 1040			05	
7	Options .09		Locking sleeve (government ring)		.11a .41	
		.11a	Disc with soft seal EPDM			
		.35	With lift restriction ring			
		.41	Luberpox ¹⁾ coated internal and external			

¹⁾ Luperpox is a coating for potable water and approved in accordance with the "UBA-Leitlinie" (federal environment agency guideline) for contact with potable water and in accordance with DVGW worksheet W 270 with KTW approval.

Type ►
Please state: ►

Si 2321 A 05 .11a .41 Set pressure 6 bar g Fluid 20 °C temperature Fluid and Water state Liquid Inlet DN 50, PN 16, B1 Outlet DN 50, PN 10, B1 Flow diameter 32 mm Approval 97/23/EG (CE)

Coefficient of discharge

Fluid group	Inlet size	Flow diameter	h/d ₀ ≥	Pressure p ₀ ≥ [bar g]	$p_b/p_0 \le$	CL _W
Vapours/gases (D/G)	DN 20 to DN 150	12 mm to 93 mm	0.1	0.6	0.62	0.25
Liquids (F)	DN 20 to DN 150	12 mm to 93 mm	0.1	0.45	-	0.25

The coefficient of discharge for gases/ vapours in a pressure ratio of $p_b/p_0 > 0.62$ is shown in the diagram below.

The capacity of the safety valve can be adjusted to the required capacity by reducing the lift, thus reducing an undesirable extra performance.

The following applies $\alpha_{\rm w(reduced)} = \alpha_{\rm w} ~{\rm X} ~{\rm q_m/q_{mc}}.$ The required ratio ${\rm h/d_0}$ is shown in the diagram below, and the reduced lift calculated with $h_{\text{(reduced)}} = d_0 \times (h/d_0)$.

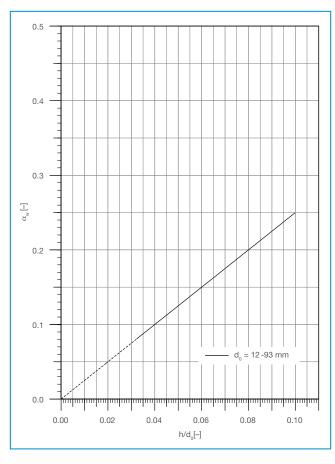
The coefficients of discharge K_{dr} acc. to DIN EN ISO 4126-1 for this valve series are identical to the above coefficients of discharge $\alpha_{_{\!\scriptscriptstyle W}}$ and the values in the diagrams.

= Lift [mm]

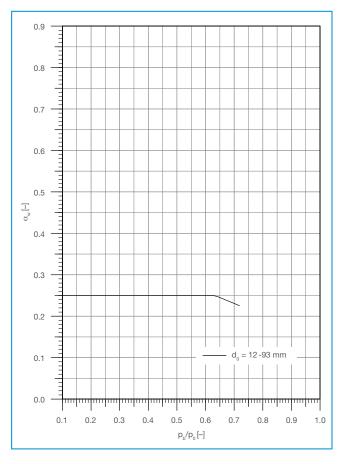
= Flow diameter of the selected safety valve

[mm]

h/d = Lift/flow diameter ratio


 Absolute back pressure [bar a] = Absolute relieving pressure [bar a] p_b/p_0 = Absolute back pressure/absolute relieving

pressure ratio


Coefficient of discharge acc. to AD 2000-Merkblatt A2

= Required mass flow [kg/hr]

= Certified mass flow [kg/hr]

Si 2321 coefficient of discharge α_{w} depending on h/d₀ for gases and vapours, liquids

Si 2321 coefficient of discharge α_w depending on p_b/p_0 for gases and vapours

Sample calculation for a safety valve for use with liquid in accordance with AD 2000-Merkblatt A 2

Fluid

Water

Density ρ

998 kg/m³

Set pressure 7.5 bar g

Opening pressure p₀ at 10% accumulation

 $(7.5 \times 1.1) + 1,01 = 9.26$ bar a

Back pressure p_b

1.01 bar a

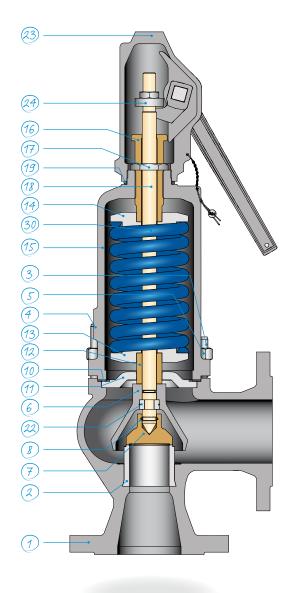
Required mass flow q_m

12,300 kg/hr

The coefficient of discharge for all these pressures is $\alpha_{ij} = 0.25$.

The required area is

$$A_0 = 0.6211 \cdot \frac{q_m}{\alpha_w \cdot \sqrt{(p_0 - p_b) \cdot \rho}}$$


$$= 0.6211 \cdot \frac{12300}{0.25 \cdot \sqrt{(9.26 - 1.01) \cdot 998}} = 337 \text{ mm}^2$$

With the flow area of $A_0 = 491 \text{ mm}^2$ the safety valve Si 2321 A 05, DN 40 \times DN 40, PN 16 × PN 16, d_o 25 mm is adequately dimensioned for the application. The certified capacity of the selected safety valve is 17,928 kg/hr.

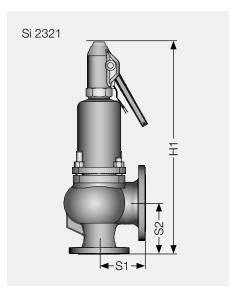
With the application data provided the following capacity table for water results in selecting the same flow area of $d_0 = 25$ mm. Interim values for the set pressure can be linearly interpolated.

Capacity data for water (20°C and 998 kg/m³) calculated according to AD-2000 Merkblatt A2 with 10% accumulation										
DN _E x DN _A	20 x 20	25 x 25	32 x 32	40 x 40	50 x 50	65 x 65	80 x 80	100 x 100	125 x 125	150 x 150
Flow diameter d ₀ [mm]	12	16	20	25	32	40	50	63	77	93
Set pressure p [bar g]	10 ³ kg/h Water									
1	1.50	2.68	4.18	6.54	10.7	16.7	26.1	41.5	62.1	90.5
2	2.13	3.79	5.92	9.25	15.1	23.7	37.0	58.7	87.8	128
3	2.61	4.64	7.25	11.3	18.5	29.0	45.3	72.0	107	156
4	3.01	5.36	8.37	13.0	21.4	33.5	52.3	83.1	124	181
5	3.37	5.99	9.36	14.6	23.9	37.4	58.5	92.9	138	202
6	3.69	6.56	10.2	16.0	26.2	41.0	64.1	101	152	221
7	3.99	7.09	11.0	17.3	28.3	44.3	69.2	109	164	239
8	4.26	7.58	11.8	18.5	30.3	47.4	74.0	117	175	256
9	4.52	8.04	12.5	19.6	32.1	50.2	78.5	124	186	271
10	4.76	8.47	13.2	20.7	33.9	52.9	82.8	131	196	286
12	5.22	9.28	14.5	22.6	37.1	58.0	90.7	144	215	313
14	5.64	10.0	15.6	24.4	40.1	62.7	97.9	155	232	338
16	6.03	10.7	16.7	26.1	42.9	67.0	104	166	248	362

Material code

Materia	alcode	05				
Tempe	rature application range	-10°C to +300°C				
Part	Name	Material				
1	Body	EN-GJL-250/5.1301 GG25/0.6025/ EN-JL 1040				
2	Seat bushing	1.4122				
3	Stud, short	5.6				
4	Stud, long	5.6				
5	Hexagon nut	5				
6	Disc holder	0.7040				
7	Disc ³⁾	1.4122				
8	Disc retainer	1.4571				
10	Flat gasket	1.4401/Graphite				
11	Intermediate cover 1)	1.4122 1.4059				
12	Pressure sleeve	1.4122				
13	Spring washer, bottom	1.0038				
14	Spring washer, top	1.0038				
15	Bonnet	EN-GJL-250/5.1301 GG25/0.6025/ EN-JL 1040				
16	Adjusting screw	1.4104				
17	Locknut	5				
18	Spindle	1.4021				
19	Flat gasket	1.4401 / Graphite				
22	Ring (two-parts)	1.4122				
23	Lifting lever ²⁾	0.7040				
24	Lifting nut	1.4021				
30	Spring 4)	1.1200 1.8159				

- 1) Intermediate cover to DN 80 made from 1.4122, above that made from 1.4059
- 2) Packed lifting lever (cap) from DN 150 flanged
- Disc material may be upgraded to stellited 1.4571 upon request for safety valves in saturated steam service
- service
 4) The spring material selection depends on the valve size and set pressure


IMI Bopp & Reuther reserve the right to technical changes or application of higher quality materials without prior notice. The material design can be tailored to customer specifications at any time upon request.

Sizes, pressure ranges and dimensions

Size	$DN_{_{E}}$	20	25	32	40	50	65 ³⁾	80	100	125	150		
	$DN_{_{A}}$	20	25	32	40	50	65 ³⁾	80	100	125	150		
Flow diameter [mm]		12	16	20	25	32	40	50	63	77	93		
Flow area [mm²]		113	201	314	491	804	1257	1964	3117	4657	6793		
Min. set pressure [bar g]		0.45											
Max. se pressu [bar g]	re	16											
Max. ba pressu [bar g]	re	4											
Inlet fla	ange	PN 10											
DIN EN	2)	PN 16											
Outlet		PN 10											
DIN EN		PN 16											
Centre dimens [mm]	to face sion S1	05	100	105	445	105	445	455	175	000	005		
	to face sion S2	95	100	105	115	125	145	155	175	200	225		
Height [mm]	H1	335	350	390	420	495	550	655	705	810	850		
Weight	[kg]	8	9	11	13	18	26	38	52	80	90		

Stated pressures are maximum values corresponding to the spring forces. The component strength may need to be reviewed depending on the material and temperature.

facing Type B1
4-hole flange drilling with DN 65 PN 10/16

depending on the material and temperature.

2) Flanges PN 10/16 acc. to DIN EN 1092-2; flange facing Type B1

IMI Bopp & Reuther Bopp & Reuther Sicherheits-und Regelarmaturen GmbH Carl-Reuther-Straße 1 68305 Mannheim Deutschland

Tel: +49 (0)621 76220-100 Fax: +49 (0)621 76220-120

imibur.sales@imi-critical.com

IMI Critical Engineering Lakeside, Solihull Parkway Birmingham Business Park Birmingham B37 7XZ United Kingdom

